Combinatorial Sets of Reals, II

Spectra and Definability

Vera Fischer

University of Vienna

Jan 28-Feb 4, 2023

Winter School in Abstract Analysis

Section Set Theory & Topology

We will consider various extremal sets of reals, like

- maximal families of eventually different reals,
- maximal cofinitary groups,
- maximal independent families

and two specific aspects of their study:

- possible cardinalities;
- definability properties.

Maximal Eventually Different Families

Definition

A family $\mathscr{E} \subseteq {}^{\omega}\omega$ is eventually different (abbreviated e.d.) if for any two distinct $f,g \in \mathscr{E}$ there is $n \in \mathbb{N}$ such that

 $\forall m > n(f(m) \neq g(m)).$

We write $f \neq^* g$. An e.d. family is maximal if it is not properly contained in any other e.d. family.

We denote such maximal families MED, their minimal cardinality \mathfrak{a}_e . For $f, g \in {}^{\omega}\omega$ if it is not the case that f, g are e.d., we write $f = {}^{\infty}g$.

Maximal cofinitary groups

Definition

- A group 𝒢 ≤ S_∞ is cofinitary if its elements are pairwise eventually different.
- A cofinitary group is maximal if it is not properly contained in any other cofinitary group.
- We denote such groups with MCG and their minimal cardinality a_g .

It is clear that MED and MCG are close relatives to maximal almost disjoint families and so a_g , a_e are close relatives of a, the minimal cardinality of an infinite maximal almost disjoint subfamily of $[\omega]^{\omega}$.

To what extent are those distinct?

Let \mathscr{M} denote the σ -ideal of meager sets and non(\mathscr{M}) the minimal cardinality of a non-meager set.

- non(*M*) and a are independent, while
- $\operatorname{non}(\mathscr{M}) \leq \mathfrak{a}_g, \mathfrak{a}_e$.

Comparing those combinatorial notions with respect to their projective complexity provides other clear distinctions:

- (A. Mathias) There are no analytic MAD families.
- (H. Horowitz, S. Shelah) There are Borel MED and Borel MCG.

< ロ > < 同 > < 回 > < 回 >

One real at a time: Diagonalization

We can adjoin (via forcing) new desired reals one at a time and so recursively generate a MAD, MED, MCG.

- (Solovay) Almost disjoint coding.
- (Y. Zhang) A new generator for a cof. group.

Eliminating intruders

The ccc posets which naturally occur, apart from adjoining new elements to a given family, all have a second crucial property, which guarantees maximality at uncountable stages of uncountable cofinality in finite support iterations!

< ロ > < 同 > < 回 > < 回 >

- Diagonalization allows us to obtain any uncountable size, as long as it is not of countable cofinality!
- What about κ_ω?

Can we do better?

- (S. Hechler) We can adjoin a MAD family of arbitrary size with finite conditions, including families of cardinality ℵ_ω, which eventually produced a model of a = ℵ_ω (J. Brendle, 2003).
- (F., A. Törnquist, 2015) We can also adjoin a MCG of arbitrary cardinality with finite conditions, including such max. groups of cardinality ℵ_ω and eventually obtain the consistency of a_g = ℵ_ω.

Remark

The spectrum $\mathfrak{sp}(\mathfrak{a})$ is closed with respect to singular limits of countable cofinality. That is, if

 $\{\mu_i\}_{i\in\omega}\subseteq\mathfrak{sp}(\mathfrak{a})$

is strictly increasing, then $\sup_{i \in \omega} \mu_i \in \mathfrak{sp}(\mathfrak{a})$.

Questions

The question, if either of

 $\mathfrak{sp}(\mathfrak{a}_e), \mathfrak{sp}(\mathfrak{a}_p) \text{ or } \mathfrak{sp}(\mathfrak{a}_g)$

is closed with respect to singular limits is open!

イロト イポト イラト イラ

Winter School 2023

MCG

- (Gao, Zhang) In *L* there is a MCG with a co-analytic generating set.
- (Kastermans) In *L* then there is a co-analytic MCG.
- (Horowitz, Shelah) There is a Borel MCG.

Question

What can we say about the existence of such nicely definable combinatorial sets of reals in models of large continuum?

< ロ > < 同 > < 回 > < 回 >

Winter School 2023

Cohen forcing

Theorem (F., Schrittesser, Törnquist)

Assume V = L. Then there is a co-analytic MCG which is indestructible by Cohen forcing.

Corollary

The existence of a Π_1^1 MCG of cardinality \aleph_1 is consistent with \mathfrak{c} begin arbitrarily large.

Our construction is inspired by the forcing method...

< ロ > < 同 > < 回 > < 回 >

Winter School 2023

Definition: Coding a real into a group element

Let σ be a partial function from $\mathbb N$ to $\mathbb N.$ Then

① σ codes a finite string $t \in 2^{l}$ with parameter $m \in \mathbb{N}$ iff

$$(\forall k < l)\sigma^k(m) = t(k) \mod 2.$$

2 σ exactly codes $t \in 2^{l}$ with parameter *m* iff

it codes *t* and $\sigma'(m)$ is undefined.

3 σ codes $z \in 2^{\mathbb{N}}$ with parameter *m* iff

$$(\forall k \in \mathbb{N})\sigma^k(m) = z(k) \mod 2.$$

Winter School 2023

Outline

The group is recursively defined, in ω_1 steps, adding one generic permutation at a time, so that each new permutation codes a given real.

Definition: The partial order $\mathbb{Q}_{\mathscr{G}}^{Z}$

Conditions of \mathbb{Q} are triples $p = (s^{\rho}, F^{\rho}, \bar{m}^{\rho})$ such that:

(
$$s^{p}, F^{p}$$
 $) \in \mathbb{Q}_{\mathscr{G}}, \overline{m}^{p}$ is a partial function from F^{p} to \mathbb{N}

Por any w ∈ dom(m̄^ρ) there is l ∈ ω such that w[s^ρ] exactly codes z ↾ l with parameter m̄^ρ(w)

3 ...

with extension relation:

(s^q, F^q, \bar{m}^q) \leq (s^p, F^p, \bar{m}^p) if and only if (s^q, F^q) $\leq_{\mathbb{Q}} (s^p, F^p)$ and \bar{m}^q extends \bar{m}^p as a function.

イロト イポト イラト イラト

Winter School 2023

The generic group

Theorem

Let $\mathscr{G} \leq S_{\infty}$, $z \in 2^{\mathbb{N}}$, let *G* be $(M, \mathbb{Q}_{\mathscr{G}}^{z})$ -generic filter and let

$$\sigma_G = \bigcup_{p \in G} s^p \in S_{\infty}.$$

- Then $\langle \mathcal{G}, \sigma_G \rangle$ is cofinitary, isomorphic to $\mathcal{G} * \mathbb{F}(x)$.
- 2 If $\tau \in (S_{\infty} \setminus \mathscr{G}) \cap M$ is cofinitary, then $\langle \mathscr{G} \cup \{\sigma_G, \tau\} \rangle$ is not cofiniatry.
- Solution Any new permutation in $\langle \mathcal{G} \cup \{\sigma_G\} \rangle$ codes *z*.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Winter School 2023

To summarize

$$\mathfrak{a}_g = \mathfrak{b} < \mathfrak{d} = \mathfrak{c}.$$

The existence of a co-analytic MED of size X₁ is consistent with

$$\mathfrak{a}_{e} = \mathfrak{b} < \mathfrak{d} = \mathfrak{c}.$$

Vera Fischer (University of Vienna)

Winter School 2023

How to obtain a model in which there is a co-analytic MED family of cardinality \aleph_1 and $\mathfrak{d} < \mathfrak{c}?$

< A >

A 30 b

Winter School 2023

Theorem (F., Schrittesser)

In the constructible universe *L* there is a co-analytic MED which remains maximal after countable support iterations or countable support products of Sacks forcing.

To summarize

The existence of a co-analytic MED family of cardinality \aleph_1 is consistent with

$$\mathfrak{a}_{e} = \mathfrak{d} = \aleph_{1} < \mathfrak{c}.$$

Winter School 2023

Definition

A forcing notion \mathbb{P} has the property ned iff for every countable $\mathscr{F}_0 \subseteq {}^{\omega}\omega$ and every \mathbb{P} -name \dot{f} for a function in ${}^{\omega}\omega$ such that

 $\Vdash_{\mathbb{P}} \dot{f}$ is e.d. from $\check{\mathscr{F}}_0$,

there are $h \in {}^{\omega}\omega$ which is e.d. from \mathscr{F}_0 and $p \in \mathbb{P}$ with

$$p \Vdash_{\mathbb{P}} \check{h} =^{\infty} \dot{f}.$$

Winter School 2023

Theorem

- For ${}^{\omega}\omega$ -bounding Suslin posets, the property ned is preserved under countable support iterations.
- Sacks forcing, as well as its countable support products and iterations have property ned.

Theorem

Suppose \mathscr{E} is a Σ_2^1 MED family. Then, there is a Π_1^1 MED family \mathscr{E}' such that for any forcing \mathbb{P} , if \mathscr{E} is \mathbb{P} -indestructible, then so is \mathscr{E}' .

Winter School 2023

- (Törnquist) The existence of a Σ_2^1 definable MAD implies the existence of a Π_1^1 MAD.
- **2** (Brendle, F., Khomskii) The existence of a Σ_2^1 definable MIF implies the existence of a Π_1^1 MIF.
- (F., Schilhan) The existence of a Σ₂¹ definable tower implies the existence of a Π₁¹ tower.

However the question if the existence of a Σ_2^1 definable MCG implies the existence of a Π_1^1 one is still open.

Winter School 2023

Tightness

Observations

- If X is a set of functions, then $\bigcup X \subseteq \omega^2$.
- Similarly if $T \subseteq \omega^{<\omega}$ is a tree then $\bigcup T \subseteq \omega^2$.

Definition

Let X be a set of functions.

- We say that X covers a tree T if $\bigcup T \subseteq \bigcup X$.
- **2** We say that X almost covers T if $\bigcup T \subseteq^* \bigcup X$.
- **③** If *T* is a tree and $t \in T$, then $T_t = \{s \in T : s \subseteq t \text{ or } t \subseteq s\}$.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Winter School 2023

-

The tree ideal generated by $\ensuremath{\mathcal{E}}$

Definition (F., C. Switzer)

The tree ideal generated by *E* ⊆ ^ωω, denotes *I*_T(*E*), is the set of all trees *T* ⊆ ω^{<ω} so that there are

 $t \in T$ and a finite $X \subseteq \mathscr{E}$

so that

$$\bigcup T_t \subseteq^* \bigcup X.$$

< ロ > < 同 > < 回 > < 回 >

Winter School 2023

24/44

② A tree *T* ⊆ $\omega^{<\omega}$ is said to be in $\mathscr{I}_T(\mathscr{E})^+$ if for each *t* ∈ *T* it is not the case that $\bigcup T_t$ can be almost covered by a finite *X* ⊆ \mathscr{E} .

Tight eventually different families

Definition

- Let $T \subseteq \omega^{<\omega}$ be a tree, $g \in {}^{\omega}\omega$.
 - g densely diagonalizes T if for each $t \in T$ there is an $s \in T$ such that $t \subsetneq s$ and for some $k \in \text{dom}(s) \setminus \text{dom}(t)$ we have s(k) = g(k).
 - ② That is, *g* densely diagonalizes *T*, if for every *t* ∈ *T* there is a branch *h* through *t* in *T* such that $h = {}^{\infty} g$.

Definition

An eventually different family \mathscr{E} is said to be tight if given any countable sequence $\{T_n\}_{n\in\omega} \subseteq \mathscr{I}_T(\mathscr{E})^+$ there is a single $g \in \mathscr{E}$ which densely diagonalizes all the T_n 's.

-

< ロ > < 同 > < 回 > < 回 > < 回 > <

Observations

- If *&* is a tight eventually different family, then it is maximal.
- MA(σ-linked) implies that every e.d. family *E*₀, *|E*₀| < c is contained in a tight e.d. family.
- CH implies that tight eventually different families exist.

... and moreover

- In the constructible universe L there is a co-analytic, Cohen indestructible tight e.d. family.
- 2 Thus (once again!) the existence of a co-analytic MED family is consistent with a_e = b = ℵ₁ < ∂ = c.</p>

Winter School 2023

Strong Preservation of Tightness

Definition: Strong preservation

Let \mathbb{P} be a proper forcing notion and \mathscr{E} a tight e.d. family. We say that \mathbb{P} strongly preserves the tightness of \mathscr{E} if for every sufficiently large θ and $M \prec H_{\theta}$ such that $p, \mathbb{P}, \mathscr{E}$ are elements of M,

if g strongly diagonalizes every elements of $M \cap \mathscr{I}_T(\mathscr{E})^+$,

then there is an (M, \mathbb{P}) -generic $q \leq p$ such that q forces that

g densely diagonalizes every element of $M[G] \cap \mathscr{I}_{\mathcal{T}}(\mathscr{E})^+$.

Such a *q* is called an $(M, \mathbb{P}, \mathcal{E}, g)$ -generic condition.

-

Theorem

Suppose \mathscr{E} is a tight e.d. family. If $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \gamma \rangle$ is a countable support iteration of proper forcing notions such that for all α ,

 $\Vdash_{\alpha} \dot{\mathbb{Q}}_{\alpha}$ strongly preserves the tightness of $\check{\mathscr{E}}$,

then \mathbb{P}_{γ} strongly preserves the tightness of \mathscr{E} .

Winter School 2023

Observation

Thus, the notion of a tight eventually different family gives a uniform framework which applies to a long list of partial orders, including:

- Sacks,
- Miller rational perfect set forcing,
- Miller partition forcing,
- h-perfect trees
- Shelah's poset for diagonalizing a maximal ideal.

Winter School 2023

Theorem (F., Switzer)

The following inequalities are all consistent and in each case there is a tight eventually different family and a tight eventually different set of permutations of cardinality \aleph_1 , respectively.

1
$$\mathfrak{a} = \mathfrak{a}_e = \mathfrak{a}_p < \mathfrak{d} = \mathfrak{a}_T = 2^{\aleph_0}$$
2 $\mathfrak{a} = \mathfrak{a}_e = \mathfrak{a}_p = \mathfrak{d} < \mathfrak{a}_T = 2^{\aleph_0}$
3 $\mathfrak{a} = \mathfrak{a}_e = \mathfrak{a}_p = \mathfrak{d} = \mathfrak{u} < non(\mathcal{N}) = cof(\mathcal{N}) = 2^{\aleph_0}.$
4 $\mathfrak{a} = \mathfrak{a}_e = \mathfrak{a}_p = \mathfrak{i} = cof(\mathcal{N}) < \mathfrak{u}.$

Moreover, if we work over the constructible universe, we can provide co-analytic witnesses of cardinality \aleph_1 to each of

in the above inequalities.

Winter School 2023

Definition

We refer to a MCG ${\mathscr G}$ of cardinality μ as witnesses to

$$\mu \in \mathsf{sp}(\mathfrak{a}_g) = \{|\mathscr{G}| : \mathscr{G} ext{ is mcg}\}$$

and to values $\mu \in sp(\mathfrak{a}_g)$ such that

 $\aleph_1 < \mu < \mathfrak{c}$

as intermediate cardinalities (or values).

Winter School 2023

Definition: Good projective witnesses A good projective witness to

 $\mu\in \mathsf{sp}(\mathfrak{a}_g)$

is a MCG ${\mathscr G}$ of cardinality μ which is also of

lowest projective complexity,

i.e. there are no witnesses to μ whose definitional complexity lies strictly below that of \mathscr{G} in terms of the projective hierarchy.

Winter School 2023

Question

What can we say about the definability properties of maximal cofinitary groups ${\mathscr G}$ such that

 $\aleph_1 < |\mathscr{G}| < \mathfrak{c}?$

Observation

Note that a Σ_2^1 MCG must be either of size \aleph_1 or continuum (being the union of \aleph_1 many Borel sets). Therefore the lowest possible projective complexity of a witness to intermediate values in sp(\mathfrak{a}_q) is Π_2^1 .

Winter School 2023

Theorem (F., Friedman, Schrittesser, Törnquist)

It is relatively consistent with ZFC that:

- $\mathfrak{c} \geq \aleph_3$ and
- there is a Π_2^1 MCG of size \aleph_2 .

Thus, it is consistent that there is a Π_2^1 good projective witness to an intermediate value in sp(\mathfrak{a}_g).

Remark

The same holds for the spectrum of MED and MAD.

Winter School 2023

Theorem (F., Friedman, Schrittesser, Törnquist)

Let $2 \le M < N < \aleph_0$ be given. There is a cardinal preserving generic extension of the constructible universe *L* in which

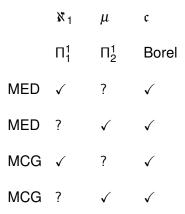
$$\mathfrak{a}_g = \mathfrak{b} = \mathfrak{d} = \mathfrak{A}_M < \mathfrak{c} = \mathfrak{A}_N$$

and there is a Π_2^1 definable maximal cofinitary group fo size \aleph_M .

Remark

The analogous result holds for maximal families of eventually different reals, maximal families of eventually different permutations, maximal families of almost disjoint sets.

Winter School 2023



Question

Can we simultaneously have optimal projective witnesses for \aleph_1 , c and an intermediate value?

31.5

< < >> < <</>

Independent Families

A family $\mathscr{A} \subseteq [\omega]^{\omega}$ is said to be independent for any two non-empty finite disjoint subfamilies \mathscr{A}_0 and \mathscr{A}_1 the set

 $\bigcap \mathscr{A}_0 \setminus \bigcup \mathscr{A}_1$

is infinite. It is a maximal independent family if it is maximal under inclusion and

 $\mathfrak{i} = \min\{|\mathscr{A}| : \mathscr{A} \text{ is a m.i.f.}\}$

Boolean combinations

For finite $h : \mathscr{A} \to \{0,1\}$, we refer to $\mathscr{A}^h = \bigcap h^{-1}(0) \setminus \bigcup h^{-1}(1)$ as a boolean combination. If $h' \supseteq h$, we say that $\mathscr{A}^{h'}$ strengthen \mathscr{A}^h .

Winter School 2023

... and once again Maximality

Let \mathscr{A} be an independent family.

- Note that, if *A* is maximal, then ∀X ∈ [ω]^ω\A∃h ∈ FF(A) such that X does not split A^h.
- If for each X ∈ [ω]^ω\𝔄 and every h ∈ FF(𝔄) there is a strengthening of 𝔄^h which is not split by X, we say that 𝔄 is densely maximal.

Remark

The notion of dense maximality appears for the first time in the work of M. Goldstern and S. Shelah on the consistency of r < u.

Winter School 2023

Density filter

Let \mathscr{A} be an independent family. The family of all $Y \subseteq \omega$ with the property that every \mathscr{A}^h has a strengthening contained in Y is a filter, referred to as the the density filter and denoted fil(\mathscr{A}).

Definition: Selective independence

A densely maximal independent family \mathscr{A} is said to be selective if $fil(\mathscr{A})$ is Ramsey.

Winter School 2023

Theorem (Shelah)

- Selective independent families exists under CH.
- They are indestructible by a countable support iterations and countable support products of Sacks forcing.

Remark

It is consistent that $\mathfrak{i}<\mathfrak{c}.$ In fact the construction can be extracted from Shelah's proof of $\mathfrak{i}<\mathfrak{u}.$

Theorem (A. Miller)

There are no analytic maximal independent families.

Theorem (Brendle, F., Khomskii)

It is relatively consistent that $i = \aleph_1 < \mathfrak{c}$ with a co-analytic witness to i.

Recall that existence of a Σ_2^1 MIF implies the existence of a Π_1^1 MIF.

4 3 5 4 3

Optimal spectra?

$$MIF \quad \checkmark \qquad \mu \qquad c \\ MIF \quad \checkmark \qquad - \qquad ? \qquad V^{\mathbb{S}_{\lambda}} \vDash sp(\mathfrak{i}) = \{\mathfrak{K}_{1}, \mathfrak{c}\}$$
$$MIF \quad - \qquad - \qquad \checkmark \qquad V^{\mathbb{P}} \vDash \mathfrak{r} = \mathfrak{i} = \mathfrak{c}$$

It is still open how to guarantee the existence of

....

- a good projective witnesses for two distinct cardinals in sp(i), or
- a good projective witness for intermediate values.

Winter School 2023

Thank you for your attention!

(a)

Winter School 2023

æ